Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519878

RESUMO

Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge about the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human-induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.


Assuntos
Cadeia Alimentar , Vertebrados , Animais , Humanos , Ecologia , Biodiversidade , Espécies Introduzidas , Europa (Continente) , Ecossistema
2.
Trends Ecol Evol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310065

RESUMO

At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.

3.
Nat Ecol Evol ; 8(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253754

RESUMO

To meet the COP15 biodiversity framework in the European Union (EU), one target is to protect 30% of its land by 2030 through a resilient transnational conservation network. The European Alps are a key hub of this network hosting some of the most extensive natural areas and biodiversity hotspots in Europe. Here we assess the robustness of the current European reserve network to safeguard the European Alps' flora by 2080 using semi-mechanistic simulations. We first highlight that the current network needs strong readjustments as it does not capture biodiversity patterns as well as our conservation simulations. Overall, we predict a strong shift in conservation need through time along latitudes, and from lower to higher elevations as plants migrate upslope and shrink their distribution. While increasing species, trait and evolutionary diversity, migration could also threaten 70% of the resident flora. In the face of global changes, the future European reserve network will need to ensure strong elevation and latitudinal connections to complementarily protect multifaceted biodiversity beyond national borders.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Europa (Continente) , Plantas , União Europeia
5.
Nat Commun ; 14(1): 7113, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932316

RESUMO

Global commitments to protect 30% of land by 2030 present an opportunity to combat the biodiversity crisis, but reducing extinction risk will depend on where countries expand protection. Here, we explore a range of 30×30 conservation scenarios that vary what dimension of biodiversity is prioritized (taxonomic groups, species-at-risk, biodiversity facets) and how protection is coordinated (transnational, national, or regional approaches) to test which decisions influence our ability to capture biodiversity in spatial planning. Using Canada as a model nation, we evaluate how well each scenario captures biodiversity using scalable indicators while accounting for climate change, data bias, and uncertainty. We find that only 15% of all terrestrial vertebrates, plants, and butterflies (representing only 6.6% of species-at-risk) are adequately represented in existing protected land. However, a nationally coordinated approach to 30×30 could protect 65% of all species representing 40% of all species-at-risk. How protection is coordinated has the largest impact, with regional approaches protecting up to 38% fewer species and 65% fewer species-at-risk, while the choice of biodiversity incurs much smaller trade-offs. These results demonstrate the potential of 30×30 while highlighting the critical importance of biodiversity-informed national strategies.


Assuntos
Borboletas , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Vertebrados
6.
Sci Adv ; 9(38): eadh4686, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729417

RESUMO

Phylogenetic diversity (PD)-the evolutionary history of a set of species-is conceptually linked to the maintenance of yet-to-be-discovered benefits from biodiversity or "option value." We used global phylogenetic and utilization data for birds to test the PD option value link, under the assumption that the performance of sets of PD-maximizing species at capturing known benefits is analogous to selecting the same species at a point in human history before these benefits were realized. PD performed better than random at capturing utilized bird species across 60% of tests, with performance linked to the phylogenetic dispersion and prevalence of each utilization category. Prioritizing threatened species for conservation by the PD they encapsulate performs comparably to prioritizing by their functional distinctiveness. However, species selected by each metric show low overlap, indicating that we should conserve both components of biodiversity to effectively conserve a variety of uses. Our findings provide empirical support for the link between evolutionary history and benefits for future generations.


Assuntos
Biodiversidade , Evolução Biológica , Humanos , Animais , Filogenia , Aves/genética , Espécies em Perigo de Extinção , Fenbendazol
7.
Conserv Biol ; 37(6): e14138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37377164

RESUMO

Following the failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework (GBF) presents the opportunity to preserve nature's contributions to people (NCPs) for current and future generations by conserving biodiversity and averting extinctions. There is a need to safeguard the tree of life-the unique and shared evolutionary history of life on Earth-to maintain the benefits it bestows into the future. Two indicators have been adopted within the GBF to monitor progress toward safeguarding the tree of life: the phylogenetic diversity (PD) indicator and the evolutionarily distinct and globally endangered (EDGE) index. We applied both to the world's mammals, birds, and cycads to show their utility at the global and national scale. The PD indicator can be used to monitor the overall conservation status of large parts of the evolutionary tree of life, a measure of biodiversity's capacity to maintain NCPs for future generations. The EDGE index is used to monitor the performance of efforts to conserve the most distinctive species. The risk to PD of birds, cycads, and mammals increased, and mammals exhibited the greatest relative increase in threatened PD over time. These trends appeared robust to the choice of extinction risk weighting. EDGE species had predominantly worsening extinction risk. A greater proportion of EDGE mammals (12%) had increased extinction risk compared with threatened mammals in general (7%). By strengthening commitments to safeguarding the tree of life, biodiversity loss can be reduced and thus nature's capacity to provide benefits to humanity now and in the future can be preserved.


Indicadores para monitorear el estado del árbol de la vida Resumen El futuro de la biodiversidad peligra tras no haberse logrado ninguno de los 20 Objetivos de Aichi. El Marco Global de Biodiversidad (GBF) de Kunming-Montreal del Convenio sobre la Diversidad Biológica (CDB) representa la oportunidad de preservar las contribuciones de la naturaleza a las personas (PNC) para las generaciones actuales y futuras mediante la conservación de la biodiversidad y la prevención de las extinciones. Es necesario salvaguardar el árbol de la vida -la historia evolutiva única y compartida de la vida en la Tierra- para mantener en el futuro los beneficios que aporta. En el GBF se han adoptado dos indicadores para supervisar los avances hacia el cuidado del árbol de la vida: el indicador de diversidad filogenética y el índice de especies evolutivamente distintas y globalmente amenazadas (EDGE). Aplicamos ambos a los mamíferos, las aves y las cícadas del mundo para demostrar su utilidad a escala mundial y nacional. El indicador de diversidad filogenética puede utilizarse para supervisar el estado de conservación general de grandes partes del árbol evolutivo de la vida, una medida de la capacidad de la biodiversidad para mantener los PNC para las generaciones futuras. El índice EDGE se utiliza para supervisar el rendimiento de los esfuerzos por conservar las especies más distintivas. El riesgo para la diversidad filogenética de aves, cícadas y mamíferos aumentó, y los mamíferos mostraron el mayor aumento relativo de la diversidad filogenética amenazada a lo largo del tiempo. Estas tendencias parecieron sólidas a la hora de elegir la valoración del riesgo de extinción. Las especies EDGE tuvieron un riesgo de extinción predominante cada vez peor. Una mayor proporción de mamíferos EDGE (12%) presentó un riesgo de extinción creciente en comparación con los mamíferos amenazados en general (7%). Si se refuerza el compromiso de salvaguardar el árbol de la vida, se puede reducir la pérdida de biodiversidad y preservar así la capacidad de la naturaleza para proporcionar beneficios a la humanidad ahora y en el futuro.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Humanos , Animais , Filogenia , Biodiversidade , Mamíferos
8.
Curr Biol ; 32(9): 2093-2100.e3, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334226

RESUMO

Taxonomic, functional, and phylogenetic diversities are important facets of biodiversity. Studying them together has improved our understanding of community dynamics, ecosystem functioning, and conservation values.1-3 In contrast to species, traits, and phylogenies, the diversity of biotic interactions has so far been largely ignored as a biodiversity facet in large-scale studies. This neglect represents a crucial shortfall because biotic interactions shape community dynamics, drive important aspects of ecosystem functioning,4-7 provide services to humans, and have intrinsic conservation value.8,9 Hence, the diversity of interactions can provide crucial and unique information with respect to other diversity facets. Here, we leveraged large datasets of trophic interactions, functional traits, phylogenies, and spatial distributions of >1,000 terrestrial vertebrate species across Europe at a 10-km resolution. We computed the diversity of interactions (interaction diversity [ID]) in addition to functional diversity (FD) and phylogenetic diversity (PD). After controlling for species richness, surplus and deficits of ID were neither correlated with FD nor with PD, thus representing unique and complementary information to the commonly studied facets of diversity. A three-dimensional mapping allowed for visualizing different combinations of ID-FD-PD simultaneously. Interestingly, the spatial distribution of these diversity combinations closely matched the boundaries between 10 European biogeographic regions and revealed new interaction-rich areas in the European Boreal region and interaction-poor areas in Central Europe. Our study demonstrates that the diversity of interactions adds new and ecologically relevant information to multifacetted, large-scale diversity studies with implications for understanding eco-evolutionary processes and informing conservation planning.


Assuntos
Biodiversidade , Ecossistema , Animais , Evolução Biológica , Humanos , Filogenia , Vertebrados
9.
Ecol Lett ; 25(4): 889-899, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032411

RESUMO

We have very limited knowledge of how species interact in most communities and ecosystems despite trophic relationships being fundamental for linking biodiversity to ecosystem functioning. A promising approach to fill this gap is to predict interactions based on functional traits, but many questions remain about how well we can predict interactions for different taxa, ecosystems and amounts of input data. Here, we built a new traits-based model of trophic interactions for European vertebrates and found that even models calibrated with 0.1% of the interactions (100 out of 71 k) estimated the full European vertebrate food web reasonably well. However, predators were easier to predict than prey, especially for some clades (e.g. fowl and storks) and local food web connectance was consistently overestimated. Our results demonstrate the ability to rapidly generate food webs when empirical data are lacking-an important step towards a more complete and spatially explicit description of food webs.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biodiversidade , Fenótipo , Vertebrados
10.
Ecol Lett ; 24(12): 2576-2585, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476879

RESUMO

Animals require a certain amount of habitat to persist and thrive, and habitat loss is one of the most critical drivers of global biodiversity decline. While habitat requirements have been predicted by relationships between species traits and home-range size, little is known about constraints imposed by environmental conditions and human impacts on a global scale. Our meta-analysis of 395 vertebrate species shows that global climate gradients in temperature and precipitation exert indirect effects via primary productivity, generally reducing space requirements. Human pressure, however, reduces realised space use due to ensuing limitations in available habitat, particularly for large carnivores. We show that human pressure drives extinction risk by increasing the mismatch between space requirements and availability. We use large-scale climate gradients to predict current species extinction risk across global regions, which also offers an important tool for predicting future extinction risk due to ongoing space loss and climate change.


Assuntos
Biodiversidade , Extinção Biológica , Animais , Mudança Climática , Ecossistema , Humanos , Temperatura
11.
Science ; 372(6544): 856-860, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016780

RESUMO

There is an urgent need to protect key areas for biodiversity and nature's contributions to people (NCP). However, different values of nature are rarely considered together in conservation planning. Here, we explore potential priority areas in Europe for biodiversity (all terrestrial vertebrates) and a set of cultural and regulating NCP while considering demand for these NCP. We quantify the spatial overlap between these priorities and their performance in representing different values of nature. We show that different priorities rarely coincide, except in certain irreplaceable ecosystems. Notably, priorities for biodiversity better represent NCP than the reverse. Theoretically, protecting an extra 5% of land has the potential to double conservation gains for biodiversity while also maintaining some essential NCP, leading to co-benefits for both nature and people.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Europa (Continente) , Filogenia
12.
Trends Ecol Evol ; 35(12): 1119-1128, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32977981

RESUMO

We are facing a biodiversity crisis at the same time as we are acquiring an unprecedented view of the world's biodiversity. Vast new datasets (e.g., species distributions, traits, phylogenies, and interaction networks) hold knowledge to better comprehend the depths of biodiversity change, reliably anticipate these changes, and inform conservation actions. To harness this information for conservation, we need to integrate the largely independent fields of biodiversity modeling and conservation. We highlight new developments in each respective field, early examples of how they are being brought together, and ideas for a future synthesis such that conservation decisions can be made with fuller awareness of the biodiversity at stake.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fenótipo , Filogenia
13.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070718

RESUMO

In the face of the current extinction crisis and severely limited conservation resources, safeguarding the tree of life is increasingly recognized as a high priority. We conducted a first systematic global assessment of the conservation of phylogenetic diversity (PD) that uses realistic area targets and highlights the key areas for conservation of the mammalian tree of life. Our approach offers a substantially more effective conservation solution than one focused on species. In many locations, priorities for PD differ substantially from those of a species-based approach that ignores evolutionary relationships. This discrepancy increases rapidly as the amount of land available for conservation declines, as does the relative benefit for mammal conservation (for the same area protected). This benefit is equivalent to an additional 5900 Myr of distinct mammalian evolution captured simply through a better informed choice of priority areas. Our study uses area targets for PD to generate more realistic conservation scenarios, and tests the impact of phylogenetic uncertainty when selecting areas to represent diversity across a phylogeny. It demonstrates the opportunity of using rapidly growing phylogenetic information in conservation planning and the readiness for a new generation of conservation planning applications that explicitly consider the heritage of the tree of life's biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Mamíferos , Filogenia , Animais , Mamíferos/classificação
14.
Nature ; 546(7656): 141-144, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538726

RESUMO

Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Internacionalidade , Animais , Aves/classificação , Política Ambiental , Mamíferos/classificação , Filogenia
15.
Ecol Lett ; 18(12): 1321-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26439311

RESUMO

The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta-community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine-resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.


Assuntos
Distribuição Animal , Biodiversidade , Dispersão Vegetal , Modelos Biológicos , Dinâmica Populacional , Análise Espacial
16.
Am Nat ; 185(6): 784-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25996863

RESUMO

Introgressive hybridization is increasingly recognized as having influenced the gene pools of large genera of plants, yet it is rarely invoked as an explanation for why closely related plant species do not co-occur. Here, we asked how the environment and tendency to interbreed relate to neighborhood co-occurrence patterns for Eucalyptus species in the Grampians National Park, Victoria, Australia. We identified species pairs that have experienced ongoing hybridization and introgression on the basis of the extent of incongruence between chloroplast DNA (JLA+ region) and nuclear ribosomal DNA (internal transcribed spacer region) phylogenies, geographic patterns of gene sharing, and field observation of intermediate morphologies. Co-occurrence, trait data (specific leaf area [SLA], maximum height, and seed mass), and environmental data were measured in plots distributed along environmental gradients. Trait and habitat similarity influenced species co-occurrence the most overall (e.g., co-occurring species had similar SLA). Reproductively compatible species were an exception; they rarely co-occurred despite being functionally similar. The negative effect of reproductive compatibility was stronger than the positive effect of SLA on co-occurrence. Our results emphasize the dominant roles of the environment and the importance of evolution in structuring local assemblages. We argue that the mechanism responsible for preventing closely related species from co-occurring in this system is reproductive interference rather than competitive exclusion. Reproductive interference should be considered more generally as a potential cause of phylogenetic overdispersion.


Assuntos
Eucalyptus/fisiologia , Hibridização Genética , Austrália , Evolução Biológica , DNA de Cloroplastos/genética , DNA Ribossômico/genética , Ecossistema , Eucalyptus/anatomia & histologia , Eucalyptus/genética , Filogenia , Folhas de Planta/anatomia & histologia , Reprodução/fisiologia , Sementes/fisiologia , Especificidade da Espécie
17.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140007, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25561668

RESUMO

Evolutionary and genetic knowledge is increasingly being valued in conservation theory, but is rarely considered in conservation planning and policy. Here, we integrate phylogenetic diversity (PD) with spatial reserve prioritization to evaluate how well the existing reserve system in Victoria, Australia captures the evolutionary lineages of eucalypts, which dominate forest canopies across the state. Forty-three per cent of remaining native woody vegetation in Victoria is located in protected areas (mostly national parks) representing 48% of the extant PD found in the state. A modest expansion in protected areas of 5% (less than 1% of the state area) would increase protected PD by 33% over current levels. In a recent policy change, portions of the national parks were opened for development. These tourism development zones hold over half the PD found in national parks with some species and clades falling entirely outside of protected zones within the national parks. This approach of using PD in spatial prioritization could be extended to any clade or area that has spatial and phylogenetic data. Our results demonstrate the relevance of PD to regional conservation policy by highlighting that small but strategically located areas disproportionally impact the preservation of evolutionary lineages.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Eucalyptus/fisiologia , Filogenia , Eucalyptus/genética , Política Pública , Especificidade da Espécie , Vitória
18.
Ecol Evol ; 3(15): 5011-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24455132

RESUMO

Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east-west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...